共轭函数性质的证明

Breeze Shane大约 2 分钟AritficialIntelligenceAritficial Intelligence

参考连接: 共轭函数两个性质的证明open in new window

性质1

无论ff是否是凸函数,ff^*恒为凸函数.

证明:

证明"无论ff是否是凸函数,ff^*恒为凸函数.",即证:

f(θt1+(1θ)t2)θf(t1)+(1θ)f(t2) f^*(\theta t_1 + (1-\theta)t_2) \leq \theta f^*(t_1) + (1-\theta)f^*(t_2)

由定义可知:

supxdomf{[θt1+(1θ)t2]xf(x)}θsupxdomf{xt1f(x)}+(1θ)supxdomf{xt2f(x)}supxdomf{(1θ)[xt2f(x)]+θ[xt1f(x)]}θsupxdomf{xt1f(x)}+(1θ)supxdomf{xt2f(x)} \begin{aligned} &\qquad \sup_{x\in \mathrm{dom}\,f}\{ [\theta t_1 + (1-\theta)t_2]x - f(x) \} \leq \theta\sup_{x\in \mathrm{dom}\,f}\{ xt_1 - f(x) \} + (1-\theta)\sup_{x\in \mathrm{dom}\,f}\{ xt_2 - f(x) \} \\ &\Leftrightarrow \sup_{x\in \mathrm{dom}\,f} \{ (1-\theta)[xt_2-f(x)] + \theta[xt_1 - f(x)] \} \leq \theta\sup_{x\in \mathrm{dom}\,f}\{ xt_1 - f(x) \} + (1-\theta)\sup_{x\in \mathrm{dom}\,f}\{ xt_2 - f(x) \} \end{aligned}

设在xx0x\to x_0时不等式左式取得最小上界,则有:

(1θ)[x0t2f(x0)]+θ[x0t1f(x0)]θsupxdomf{t1xf(x)}+(1θ)supxdomf{t2xf(x)} (1-\theta)[x_0t_2-f(x_0)] + \theta[x_0t_1 - f(x_0)] \leq \theta\sup_{x\in \mathrm{dom}\,f}\{ t_1x - f(x) \} + (1-\theta)\sup_{x\in \mathrm{dom}\,f}\{ t_2x - f(x) \}

注意到下式显然成立:

x0t1f(x0)supxdomf{t1xf(x)}(1)x0t2f(x0)supxdomf{t2xf(x)}(2) \begin{aligned} &x_0t_1 - f(x_0)\leq \sup_{x\in \mathrm{dom}\,f}\{ t_1x-f(x) \} \qquad \text{(1)} \\ &x_0t_2 - f(x_0)\leq \sup_{x\in \mathrm{dom}\,f}\{ t_2x-f(x) \} \qquad \text{(2)} \end{aligned}

θ(1)+(1θ)(2)\theta(1) + (1-\theta)(2)这一线性组合即可得到以上不等式成立,由此性质1得证.


性质2

凸函数的共轭函数的共轭函数是它自己.

证明:

已知f(x)f(x)为凸函数,共轭函数的定义如下:

f(t)=supxdomf{txf(x)} f^*(t) = \sup_{x\in \mathrm{dom}\,f}\{ tx - f(x) \}

ddxf(t)=0ddx(txf(x))=0t=ddxf(x) \because \frac{d}{dx} f^*(t) = 0 \Rightarrow \frac{d}{dx}(tx - f(x)) = 0 \\ \therefore t = \frac{d}{dx}f(x)

又有f(t)f^*(t)的共轭函数为

f(s)=suptdomf{stf(t)} f^{**}(s) = \sup_{t\in \mathrm{dom}\,f}\{ st - f^*(t) \}

ddtf(s)=0ddt[stf(t)]=0 \because \frac{d}{dt}f^{**}(s) = 0 \Rightarrow \frac{d}{dt}[st - f^*(t)] = 0

s=ddtf(t)=ddt[txf(x)]=x+tdxdtddtf(x)=x+tdxdtddxf(x)dxdt=x+tdxdttdxdt=x \begin{aligned} \therefore s &= \frac{d}{dt}f^*(t) \\ &= \frac{d}{dt}[tx - f(x)] \\ &= x + t\frac{dx}{dt} - \frac{d}{dt}f(x) \\ &= x + t\frac{dx}{dt} - \frac{d}{dx}f(x)\cdot \frac{dx}{dt} \\ &= x + t\frac{dx}{dt} - t\frac{dx}{dt} \\ &= x \end{aligned}

f(s)=suptdomf{stf(t)}=suptdomf{txf(t)}=suptdomf{tx[txf(x)]}=suptdomff(x)=f(x)=f(s) \begin{aligned} \therefore f^{**}(s) &= \sup_{t\in \mathrm{dom}\,f}\{ st - f^*(t) \} \\ &= \sup_{t\in \mathrm{dom}\,f} \{ tx - f^*(t) \} \\ &= \sup_{t\in \mathrm{dom}\,f} \{ tx - [tx - f(x)] \} \\ &= \sup_{t\in \mathrm{dom}\,f}f(x) \\ &= f(x) \\ &= f(s) \end{aligned}

故该性质成立.